Mérési jegyzőkönyv:

Félvezetők vizsgálata

Rakyta Péter

mérőtársak: Mezei Márk és Pósfai Márton

mérés időpontja: 2007. április 12. leadás időpontja: 2007. április 26. Mérésvezető: Böhönyei András

1. Bevezetés

A mérés során félvezetőket vizsgáltunk, néhány fizikai sajátosságaikról a kvalitatív magyarázat mellett a fontos paramétereket (pl. mozgékonyság) numerikusan is meghatároztuk. A jegyzőkönyvben megadjuk:

- az ellenállás hőmérsékletfüggését, aminek a kiértékelésével meghatározzuk a tiltott sáv szélességét;
- megbecsüljük a szennyezőanyag jelenlétének mértékét;
- a Drude-modellből adott hőmérsékleten kiszámoljuk a mozgékonyságot;
- kimérjük a töltéshordozók mozgékonyságának hőmérsékletfüggését;
- rendelkezésünre bocsátott adatfájl segítségével megadjuk az adalékolt félvezető szennyezési nívóját;
- meghatározzuk a Hall-állandót és segítségével kiszámítjuk a töltéshordozó-koncentrációt.

A félvezetők fizikáját sávszerkezettükkel modellezhetjük. A vezetési- és valenciasávot egy tiltott sáv (gap) választja el egymástól. Ennek nagysága lényegesen befolyásolja a vezetési tulajdonságok hőmérsékletfüggését, hiszen tiszta félvezetőben az elektronok mindaddig nem vezetnek, míg közülük néhány nem gerjesztődik a vezetési sávba. A szennyezett félvezetők esetében ez a kép annyiban módodul, hogy a szennyezési atomok milyenségéből adódóan (donor/akceptor) a tiltott sávban megjelenik egy donor/akceptor-nívó. A donor nívó a tiltott sáv felső határa közelében helyezkedik el, így a rajta lévő elektronok könnyen gerjesztődhetnek a vezetési sávba (elektronvezetés, n-típusú). Az ekceptornívó a tiltott sáv alsó határánál helyezkedik el, a valenciasávból elektronok tudnak gerjesztődni erre a nem teljesen betöltött nívóra. Amint a valenciasáv nem lesz teljesen betöltött, részt tud venni a vezetésben (lyukvezetés, p-típusú). Ezt a két vezetési mechanizmust nevezzük szennyezési vezetésnek.

A donor atomok külső elektronjának kötési energiája

A kötési energiát egyszerű hidrogénatom modellel becsülhetjük meg, azonban figyelembe kell venni az elektron effektív tömegét, illetve hogy az 5. elektron nagyobb távolságának a mértéke a magtól egy dielektromos állandóval adható meg. Foszfor atomra ezek a mennyiségek: $m_{eff} = 0.2m_e$, $\varepsilon_r = 11.7$. A kötési energia az

$$E = \frac{1}{2} \frac{e_0^2}{a} \qquad \text{ahol:} \ e_0^2 = \frac{e^2}{4\pi\varepsilon_r\varepsilon_0} \qquad a = \frac{\hbar^2}{m_{eff}e_0^2}$$

összefüggéssel számolható ki. Eredményül

E = 0.02 eV

adódik.

2. A mérőberendezés

A vizsgálandó minta (*S i*) egy kályhában helyezkedik el, melyet időben egy megadott program szerint fűtünk. A mi esetünkben közelítőleg 4 °C/min sebességű lineáris fűtési programot használtunk. A kályha egy henger alakú cső volt, amelynek közepén helyezkedett el a minta. A kályhát egy rátekercselt (a mágneses tér kiküszöbölése céljából bifiláris módon) fémszállal fűtöttük. A kályha köpenyében csapvíz folyt: ez töltötte be a hűtési mechanizmus szerepét. Erre azért lehet szükség gyakorlati szempontból, hogy hatékonyan tudjuk szabályozni a kályha hőmérsékletét (túlfűtés esetén hűtésre van szükség). A kályhában lévő hőmérsékletet termopárral mértük, melynek referenciahőmérséklete a feltehetően lassan változó csapvíz volt. A termopár feszültségét (erősítés után) komparátor hasonlította össze a program szerinti értékkel és ez vezérelte a fűtőszálon átfolyó áram nagyságát.

A minta ellenállását négyponttechnikával mértük: a két szélső ponton áramgenerátorral állandó 10 μ A áramot vezetünk át a mintában (nem túl nagyot, mert nem szeretnénk, ha a kontaktusoknál lévő nagy ellenállásokon - Schottky-barrier - sok hő termelődne). A feszültséget a két belső ponton mérjük; a feszültségmérő nagy belső ellenállása miatt a kontaktellenálláson és a feszültségmérőn nem folyik áram, potenciálugrás kizárólag a mérni kívánt szakaszon lép fel. Ezzel a módszerrel így több zavaró tényezőt is ki lehet küszöbölni. Azonban a mintán - az elkerülhetetlenül jelen lévő hőmérsékletgradiens miatt termofeszültség jelenik meg, amit ki kell küszöbölni. Ezt áramreverzálással oldhatjuk meg a legegyszerűbben: megfordítva az áram irányát a termofeszültség nem változik meg, csupán a mérni kívánt "ohmmikus,, feszültség vált előjelet.

A mérőberendezés alkatrészeit a célnak megfelelően kell megválasztani: a potenciálvezetéknek inert anyag kell, hiszen magas hőmérsékleten sem szabad oxidálódnia. Ezért erre a célra az aranynál alkalmasabb a szintén inert platina, ami nem annyira puha, így kényelmesebben használható. A mintát továbbá elektromosan el kell szigetelni a termopártól, azonban a hőkontaktust nem szabad megszakítani. Általában a jó elektromos vezetők jó hővezetők is szoktak lenni, ezért az említett célra csak egy vékony szigetelő lehet megfelelő. A teflon csak 200°C-ig alkalmas, a vékony kerámiák pedig rendkívül törékenyek. Végül is egy vékony csillámlemez bizonyul a legmegfelelőbbnek a mérés kivitelezésére.

3. Az ellenállás hőmérsékletfüggése

Az általunk vizsgált hőmérséklettartományban a gerjesztési energia elég nagy ahhoz, hogy a félvezető saját vezetési töltéshordozói váljanak dominánssá. Ez teszi lehetővé, hogy a mintát lényegében tisztának tekintsük, és a tiszta anyag fizikai jellemzőit határozzuk meg. Ez természetesen nem jó közelítés az egész hőmérséklettartományban, látni fogjuk hogy milyen hőmérséklet mellett válnak a saját és a szennyezési töltéshordozók azonos jelentőségűvé.

3.1. A tiltott sáv vastagságának meghatározása

A jegyzetben közölt számolások szerint a szennyezetlen mintában a vezetési elektronok koncentrációja:

$$n_e = C \ T^{3/2} \ e^{-\frac{E_g}{kT}} , \tag{1}$$

ahol *C* egy konstans, mely magába foglalja a töltéshordozók effektív tömegét és egyéb állandókat, E_g a keresett tiltottsáv-szélesség, *k* pedig a Boltzmann állandó. A mérésben a minta ellenállását határoztuk meg, melyet a töltéshordozók koncentrációjából és mozgékonyságából lehet kiszámolni (Drude-modell). A mozgékonyságot a fononszórás határozza meg, így az elméleti számolások szerint:

$$\mu \sim T^{-5/2}$$

Ezt az arányosságot a mérés során szintén igazoltuk, ezt tartalmazza a jegyzőkönyv egy későbbi fejezete. Az (1) egyenlet felhasználásával így az ellenállás:

$$\frac{1}{R} \sim T^{-1} e^{-\frac{E_g}{kT}} \tag{2}$$

A jegyzetben leírtak alapján, ha ln $\frac{T}{R}$ mennyiséget $\frac{1}{T}$ függvényében ábrázoljuk, akkor egy E_g/k meredekségű egyenest kapunk. Ebből a tiltott sáv szélessége már könnyen meghatározható. Az ellenállás hőmérsékletfüggését, és az illesztést az 1. ábra szemlélteti. Az illesztésből adódó sávszélesség:

$$E_g = (1.317 \pm 0.002) \text{ eV}$$
(3)

A táblázati adatok szerint 300K hőmérsékleten a tiltott sáv vastagsága 1.11eV. Ez 19%-os eltérést jelent. Ennek az energiának megfelelő gerjesztést legfeljebb $\lambda \approx 943$ nm hullámhosszú fotonnal lehet megvalósítani.

3.2. A maradék töltéshordozó-koncentráció

Mint már említettük, alacsony hőmérsékleten a minta vezetése a jelenlévő szennyezőatomok hatásaként értelmezhető. Kis hőmérsékleten ugyanis a vezetési elektronok koncentrációja nagyon kicsi, viszont a kimért ellenállásgörbe ezt nem követi. Ha feltesszük, hogy a szennyezési töltéshordozók mozgékonysága nem tér el a vezetési elektronok mozgékonyságától, akkor a koncentrációjuk megbecsülhető: az előző feladatrészben meghatározott paraméterek segítségével kiszámolható például szobahőmérsékleten a "vezetési, ellenállás. Ez úgy aránylik a mért értékhez, mint a szennyezési és vezetési töltéshordozók koncentrációja egymáshoz:

$$\frac{R_{elm}(300 \text{ K})}{R_{mert}(300 \text{ K})} = \frac{\sigma_{mert}}{\sigma_{elm}} = \frac{n_{mert}e \langle \mu_{mert} \rangle}{n_{elm}e \langle \mu_{elm} \rangle} \approx \frac{n_{mert}}{n_{elm}} .$$
(4)

Elméleti számolások szerint T = 300 K mellett a töltéshordozók koncentrációja: $n_{elm} = 5.05 \ 10^9 \text{ cm}^{-3}$. Az elméleti értékre $R_{elm} = 2.92$ M Ω adódik, míg a mért érték: $R_{mert} = 1.19$ k Ω . Ebből a maradék töltéshordozó-koncentráció:

$$n_{mert} \approx 1.23 \ 10^{13} \ \mathrm{cm}^{-3}$$
 (5)

3.3. A mozgékonyság szobahőmérsékleten

A számoláshoz a Drude-modell alapján az alábbi összefüggést használjuk:

$$R = \rho \frac{l}{A} = \frac{1}{\sigma} \frac{l}{A} = \frac{l}{ne \langle \mu \rangle A} , \qquad (6)$$

1. ábra. A tiltott sáv szélesség;nek meghatározása.

amiből:

$$\langle \mu \rangle (T) = \frac{l}{n(T)eR(T)A}$$
, (7)

ahol $l = (1.00 \pm 0.05)$ cm a potenciálpontok távolsága, $A = (0.250 \pm 0.005)$ cm² a minta keresztmetszete, $n(300\text{K}) = n_{\text{mert}}$, $R(300\text{K}) = R_{\text{mert}}$ az előző feladatrészben meghatározott értékek. Ekkor a mozgékonyság:

$$\langle \mu \rangle (300\text{K}) = (1.7 \pm 0.1) \ 10^9 \ \frac{\text{cm}^2}{\text{Vs}}$$
 (8)

3.4. A mozgékonyság hőmérsékletfüggése

Ha a mozgékonyság hőmérsékletfüggését szeretnénk kimérni és az ellenállás hőmérsékletfüggése áll rendelkezésünkre, akkor célszerű abban a tartományban dolgoznunk, ahol a szennyezési töltéshordozók koncentrációja már elérte a telítést, de a saját vezetés még nem jelentős. Ekkor a koncentráció jó közelítéssel állandó, és a vezetőképesség hőmérsékletfüggése megegyezik a mozgékonyság hőmérsékletfüggésével: $\sigma \sim T^{\kappa}$. Véve ennek az egyenletnek a logaritmusát, egy egyenest kapunk a megfelelő szakaszon, melynek meredeksége éppen κ . Az illesztésből (2. ábra)

2. ábra. A mozgékonyság meghatározására szolgáló illesztés.

$$\kappa = 2.45 \pm 0.01$$

adódik. Ez 2%-os eltérést jelent az elméleti értéktől.

4. Az adalékolt félvezető szennyezési nívója

A szennyezési vezetés kis hőmérsékleteknél dominál. Mivel az előzőekben használt mérőberendezés nem alkalmas a megfelelő hőmérséklettartományban való működtetésre, egy régebben, más módszerrel meghatározott adatsort elemezünk ki. A lyukak koncentrációjára érvényes:

$$n_{ly} = \sqrt{N_a} (kT)^{3/4} e^{-\frac{E_a}{2kT}}$$
(9)

Ebből figyelembe véve a mozgékonyság ~ $T^{-3/2}$ -es függését, könnyen adódik a vezetőképesség:

$$\frac{1}{R} \sim \sigma \sim T^{-3/4} e^{-\frac{E_a}{2kT}} . \tag{10}$$

Ebből az egyenletből megint egy lineáris összefüggéshez jutunk, ha $\ln(T^{3/4}/R)$ -t ábrázoljuk 1/T függvényében. Az adatsorból nyert R - T grafikont és a transzformált grafikon megfelelő részére illesztett egyenest a 3. ábra szemlélteti. Az illesztett egyenes meredekségéből:

$$E_a = (7.9 \pm 0.1)10^{-2} \text{ eV}$$
(11)

3. ábra. A tiltott sáv szélesség;nek meghatározása.

5. Hall-effektus mérése

A Hall-effektus lényege, hogy egy mágneses térbe helyezett mintán (a rajta átfolyó áram irányára merőleges irányban) feszültség mérhető. Ez a feszültség tartja fenn az egyensúlyt a Lorentzerővel, vagyis az áramot létrehozó töltések mozgása nem görbült pályán valósul meg. A jegyzet alapján a mérhető feszültség:

$$U_m = \frac{R_H}{d} BI \sin \alpha + RI , \qquad (12)$$

ahol α a mágneses tér és az áram iránya által bezárt szög, R_H a Hall-állandó, B a mágneses mező, I pedig az átvezetett áram. Látjuk, hogy a képlet tartalmaz egy adítív tagot is mely nem függ a mágneses mezőtől, nélküle is megjelenik. Ennek a tagnak technikai oka van: nem tudjuk elhelyezni a mérő pontokat egzaktuk az áramra merőlegesen, így lesz egy áramirányba eső

hagyományos Ohmikus ellenállás. A mintát egy erős permanens mágnesek által létrehozott, jó közelítéssel homogén mágneses térbe helyezzük. A minta elforgatható a mágneses térben így a (12) egyenlet szerint egy $U_m(\alpha)$ görbét mérhetünk ki, melyre illesztve a megfelelő összefüggést meghatározhatjuk a Hall-állandó értékét. A Hall-állandó előjele lehetőséget ad a töltáshordozók milyenségének meghatározására, értékéből pedig kiszámolhatjuk a töltéssűrűséget. Ugyanis:

$$R_H = \frac{1}{nq} . \tag{13}$$

Ebben nyilvánul meg a Hall-effektus mérésének jelentősége. A mágneses indukció nagyságát egy fluxusmérővel határoztuk meg. A mért fluxus: $\Phi = (1.275 \pm 0.005)10^{-3}$ Vs. A fluxusmérő tekercseinek az adatai: a tekercsek belső sugara r = 3.15 mm, a külső sugara R = 4.8 mm, a tekercs menetszáma N = 194. Az indukció értékét az alábbi összefüggéssel számoljuk ki:

$$B = \frac{\Phi}{FN} , \qquad (14)$$

ahol *F* a tekercs átlegfelülete:

$$F = \frac{1}{R - r} \int_{r}^{R} \pi r'^{2} dr' = \frac{\pi}{3} \left(R^{2} + Rr + r^{2} \right) \,. \tag{15}$$

A megadott értékekből $B = (0.1305 \pm 0.0005)$ T adódik a mágneses indukcióra. A mért feszültségértékeket az elfordulási szög függvényében az alábbi táblázat mutatja:

A Hall-feszültség $I = 1 \text{ mA}$ áramerősség mellett	
α	$U_m [\mathrm{mV}]$
0	25.023
15	25.009
30	24.979
45	24.928
60	24.888
75	24.792
90	24.703
105	24.624
120	24.547
135	24.481
150	24.433
165	24.404
180	24.393
195	24.407
210	24.442
225	24.497
240	24.566
255	24.650
270	24.736
285	24.818
300	24.893
315	24.955
330	25.002
345	25.03
360	25.039

A (12) egyenlet helyett egy $U_m = a \sin(\alpha + \varphi) + b$ összefüggést illesztünk az adatsorra. Az illesztett paraméterek értéke (az illesztést a 4. ábra szemlélteti):

$$a = (3.20 \pm 0.05)10^{-4} V$$

$$b = (24.72 \pm 0.01) mV$$

$$\varphi = (93.0 \pm 0.1)^{\circ}$$
(16)

A nagyjából 90°-os fázistolás ismerve a mérőberendezést nem meglepő, hiszen a berendezésen elhelyezett skála és a valójában mérendő α szög 90°-kal el voltak forgatva egymáshoz képest. A Hall-állandót az alábbi összefüggés adja:

$$R_H = \frac{ad}{IB} \; ,$$

ahol $d = (0.460 \pm 0.005)$ mm a minta vastagsága. Ekkor:

$$R_H = (1.13 \pm 0.03)10^{-3} \ \frac{\text{m}^3}{\text{C}}$$
(17)

4. ábra. A Hall-feszültség a szög függvényében.

Mivel a Hall-állandó pozitívnak adódott, elmondható, hogy az áramot szállító töltéshordozók lyukak voltak. Könnyen meghatározható a töltéshordozók koncentrációja is:

$$n = \frac{1}{R_H e} \qquad n = (5.5 \pm 0.2)10^{21} \text{ m}^{-3}$$
(18)

6. Összefoglalás

A mérés során megtanultuk, hogyan lehet meghatározni a félvezetők főbb tulajdonságait a legegyszerűbb elméleti modellek alapján: a különböző hőmérsékleti tartományokban a szennyezési/saját töltéshordozóknak tulajdonítottuk a domináns szerepet. Elsajátítottuk a négypontos mérési technikát, amely széleskörűen alkalmass nagyon sok "parazita effektus,, kiküszöbölésére (Schottkygát, mérőműszerek belső ellenállásai, stb.). A Hall-effektus pedig (abból kifolyólag hogy a töltéshordozók töltését csak első hatványban tartalmazzák az effektust leíró egyenletek) alkalmas arra, hogy fényt derítsünk a töltéshordozók milyenségére is.