1. Bevezetés

A mérés célja folyadékkristályok optikai tulajdonságainak vizsgálata. A "folyadékkristályos állapot" nem más, mint bizonyos anyagoknak szűk hőmérséklettartományba eső fázisa. A mérés folymán többek között nematikus folyadékkristályok fázisátlalkulását figyeljük majd meg. Az átalakulást a minta optikai tulajdonságainak megfigyelésével tudjuk nyomon követni. Ezt követően a nematikus minta két oldalára csatlakoztatott elektródák segítségével "csavart nematikus kijelzőt" állíthatunk elő (feszültség nélküli eset). Az elektródákra különböző feszültségjelalakokat vezetünk, és vizsgáljuk a minta polarizált fénnyel szembeni viselkedését. A mérés során lehetőségünk adódik egy ferroelektromos cella hasonló típusú vizsgálatára is.

2. A nematikus minta fázisátalakulása

1. ábra. Az ordinárius és extraordinárius fénysugarak eltérülése az eredeti lézersugártól a hőmérséklet függvényében.

A nematikus minta helyről helyre a direktor irányába álló hosszúkás molekulákból áll. A rajtuk átvezetett fénnyaláb különböző polarizáltságú összetevői más-más optikai törésmutatót éreznek, így különbőző képpen törnek is meg a határfelületeken. Mi megfigyeltük az ordinárius és extraordinárius fénysugarak eltérülést a hőmérséklet függvényében. A mért adatokat a csatolt milliméterpapíron szerepelnek, a grafikus eredményeket az 1. ábra szemlélteti. A grafikonhoz tartozó adatokat az alábbi táblázat tartalmazza:

Hőmérséklet	Ordinárius	Extraordinárius	Hőmérséklet	Ordinárius	Extraordinárius
$\begin{bmatrix} 0 C \end{bmatrix}$	sugár [cm]	sugár [cm]	$\begin{bmatrix} 0 C \end{bmatrix}$	sugár [cm]	sugár [cm]
24.5	7	9.5	39.0	7.4	8.8
26	7	9.5	40.0	7.4	8.8
28	7	9.5	40.8	7.5	8.4
30.5	7	9.5	40.9	7.5	7.5
31.2	7.15	9.3	41.3	7.7	7.9
33.2	7.2	9.2	42.0	7.8	7.9
35.9	7.25	9.0	43.0	7.8	7.8
37.2	7.25	9.0	44.2	7.85	7.9
38.1	7.3	8.95	45.0	7.85	7.9

Az eltérülések a vizsgált hőmérséklettartományon kívül már nem változtak. A grafikon nagyszerűen mutatja a fázisátalakulás folyamatát, ahogyan a két különböző polarizáltságú fénysugár összeér. Innen kezdve a minta már nem kettőstörő. A fázisátalakulás előtt két fényfoltot láttunk a felragasztott milliméterpapíron, az átalakulás után már csupán egyet. A fázisátalakulás pillanataiban viszont látványos, időben dinamikusan örvénylő, kaotikusan fejlődő képet láttunk. Egy pillanatfelvételt mutat a 2. ábra.

2. ábra. A fázisátlalakulás pillanata.

3. A csavart nematikus cella vizsgálata

A cellára erősített elektródák segítségével csavart nematikus cellát hozhatunk létre (feszültség nélküli eset). A cella két oldalára egymásra merőleges irányítású polárszűrőket helyezünk. A nematikus mintát úgy forgatjuk el, hogy a rendszeren átjutó fény intenzitása maximális legyen. Ha

az elektródákra feszültséget kapcsolunk, a csavart nematikus minta bizonyos métékig "kiegyenesedik" az elektródákra kapcsolt feszültség függvényében, és csökken az átengedett intenzitás. Mi szinuszos, háromszög és négyszög jelalakokat kapcsoltunk az elektródákra. Az eredményeket a 3. ábra mutatja.

(a) Az átengedett intenzitás (felső grafikon, 0.2V/osztás) a szinuszos vezérlőjel hatására (alsó grafikon, 5V/osztás).

(b) Az átengedett intenzitás (felső grafikon, 0.5*V*/osztás) a háromszögjeles vezérlőfeszültség hatására (alsó grafikon, 5*V*/osztás).

(c) Az átengedett intenzitás (felső grafikon, 30mV/osztás) a négyszögjeles vezérlőfeszültség hatására (alsó grafikon, 5V/osztás).

3. ábra. Az átengedett intenzitások különböző alakú vezérlőjelek esetében. A vezérlőjelek mindegyik esetben 100 *Hz* frekvenciájúak voltak.

Látjuk, hogy a kimenő jel (az intenzitással arányos feszültség) a vezérlőjelnél nagyjából kétszer nagyobb frekvenciájú és hozzá képest fázistolt (szinuszos és háromszögjel esetében). A frekvencia kétszereződését nagyon könnyű megmagyarázni: a nematikus cella "zárni" próbál akár pozitív, akár negatív feszültséget kapcsolunk rá. Az egyenfeszültség nélküli periodikus vezérlőjel egy periodusában a cella kétszer próbál zárni, innen ered a kétszeres frekvencia. A fázistolás pedig a molekulák tehetetlenségéből adódik, mivel nem tudják valós időben követni a vezérlőjel változásait. Négyszögjel esetében nem látunk frekvenciakétszeröződést. A molekulák egy exponenciális alakú időfüggés során próbálnak beállni a négyszögjelszintek egyensúlyi állapotaiba, mely során fáziskéső tehetetlenséget sem mutatnak . Az osszcilloszkópról készített felvételeket digitálisan elemezve (pixelkoordináták segítségével) az alábbi eredményekre jutunk:

	szinuszos jel	háromszögjel	négszögjel
vezérlőjel frekvenciája:	$(100 \pm 2) Hz$	$(99 \pm 2) Hz$	$(102 \pm 2) Hz$
kimenőjel frekvenciája:	$(200 \pm 5) Hz$	$(200 \pm 4) Hz$	$(101 \pm 2) Hz$
fázistolás:	$(1.22 \pm 0.08) ms$	$(1.20 \pm 0.07) ms$	$\approx 0 ms$

4. A nematikus cella kapcsolási ideje

4. ábra. Az átengedett intenzitás a négyszögjeles vezérlőfeszültség hatására. Az időállandó mérése. (a fényképen 1 beosztás = $5 \ 10^{-3} s$)

A cellára most egy kicsi frekvenciájú ($f \approx 33 \ Hz$) négyszögjelet kapcsolunk. A osszcilloszkópról készült fénykép segítségével exponenciális görbét illeszthetünk a megfelelő szakaszokra. Az illesztési pontok a fényképről pixelkoordináták formájában leolvasott pontok lesznek. Sajnos ebben az esetben kicsit rosszul sikerült a fénykép, de szerencsére még kiértékelhető maradt. A fénykép és az illesztés a 4. ábrán látható. Az illesztés után a képernyő kapcsolási ideje $\tau = (1.7 \pm 0.1) \ ms$ -nak adódott. Ez az érték nagyon közel esik az előző szakasz táblázatában szereplő fázistolásokhoz. Ez nem véletlen! A képernyő nagyságrendileg ekkora késéssel tudja követni a vezérlőjelet.

5. A feszültség-intenzitás karakterisztika

A nematikus cella vizsgálatát 100 H_z -es szinuszos vezérlőjel amplitúdójának változtatásával folytattuk. Osscilloszkóp segítségével megmértük a cella feszültség-intenzitás karakterisztikáját. Az intenzitást természetesen most is egy vele arányos feszültségként kaptuk meg. A mért értékeket az alábbi táblázat mutatja:

vezérlőjel [V]:	0	0.3	0.8	2.0	4.25	4.25	4.4	4.5	4.8	5.0	6.0	7.75	10.0
intenzitás [V]:	0	0	0	0	0	1.5	2.75	2	1.8	1.2	1.0	0.5	0.25

Az adatok grafikus ábrázolása az 5. ábrán látható. A vezérlőjel (0 - 4.25) V-os tartományában a cella nem vezérelhető. (A kimeneten a fotodióda feszültségének változását mérjük. A megadott tartományban ezért 0 V-os kimeneti jelet kapunk annak ellenére, hogy a cella átereszt.) A cellát a legnagyobb intenzitáshoz tartozó feszültségértéknél, azaz 4.4 V amplitúdójú vezérlőjel esetén célszerű működtetni, amennyiben a vezérlőjel egy 100 Hz-es szinuszalak.

5. ábra. A feszültség-intenzitás karakterisztika. A folytonos vonal csupán a szemet vezeti.

6. A frekvencia-intenzitás karakterisztika

6. ábra. A feszültség-intenzitás karakterisztika. A folytonos vonal az $U = A e^{b.f} + C$ illesztett függvényt szemlélteti.

Az előző szakaszban a legnagyobb intenzitást a vezérlőjel 4.4 V értékénél kaptuk, ezért a frekvenciakarakterisztikát is ennél a feszültségértéknél fogjuk felvenni. A mért adatokat az alábbi táblázat tartalmazza:

frekvencia [Hz]:	40	50	71	83.3	100	125	166.7	238	500
intenzitás [V]:	4.5	4.0	3.0	2.7	2.3	1.9	1.4	0.8	0.3

A mérési pontokra nagyon jól illeszkedik egy $U = A e^{b.f} + C$ alakú függvény, ahol *f* a szinuszjel frekvenciáját, *U* az intenzitással arányos feszültséget, *A*, *C* és *b* pedig az illesztési paramétereket jelölik. Az illesztés eredménye:

$A \approx 6.55 V$	$\delta A = 12.5\%$
$b \approx -0.012 \ s$	$\delta b = 16\%$
$C \approx 0.3694 V$	$\delta C = 62\%$

At eredményeket grafikusan a 6. ábra szemlélteti.

7. A felületstabilizált ferroelektromos folyadékkristály - kijelző

Ennek a cellának a működése eltért az előzőtől. A kimenő jel frekvenciája megegyezik a bemenő jel frekvenciájával, vagyis itt már számít a tér iránya. Ez a fajta cella sokkal alkalmasabb jelvezérelt kontrasztváltásra, mert az előzőnél hűebben követi a feszültségváltozásokat. Négyszögjellel vizsgálva a cellát a kapcsolási időt kb. 0.3 *ms*-nak találtuk (lásd a köv. szakaszt). Ez az idő egy nagyságrenddel jobb mint a nematikus cella kapcsolási ideje. 170 *Hz*-es szinuszos, háromszög- és négyszögjel esetén látható intenzitás-időfüggéseket a 7. ábra szemlélteti.

8. A ferroelektromos cella kapcsolási ideje

Hasonlóan a nematikus cellához, ebben az esetben is meghatározzuk a négyszögjelre adott válasz időállandóját. A 8. ábrán látható fényképből kiírva a grafikonra illeszkedő néhány pont pixelkoordinátáit, a kapott pontsorra exponenciális görbét illeszthetünk. Az illesztés eredményéből kapott időállandó:

$$\tau = (3.4 \pm 0.1) \ 10^{-4} \ s$$

Ahogy már említettük ez a kapcsolási idő egy nagyságrenddel jobb a nematikus cellánál. A ferroelektromos cellát tehát sokkal gyorsabban lehet vezérelni. A működése nagyon jó összhangban van a jegyzetben leírtakkal: a 7. ábrán látható jelalakok arról tanúskodnak, hogy a cellának két stabil állapota van, melybe a cella az elektromos tér irányától függően akar beállni.

(a) Az átengedett intenzitás (felső grafikon, 0.2V/osztás) a szinuszos vezérlőjel hatására (alsó grafikon, 5V/osztás).

(b) Az átengedett intenzitás (felső grafikon) a háromszögjeles vezérlőfeszültség hatására (alsó grafikon).

(c) Az átengedett intenzitás (felső grafikon) a négyszögjeles vezérlőfeszültség hatására (alsó grafikon).

7. ábra. Az átengedett intenzitások különböző alakú vezérlőjelek esetében. A vezérlőjelek mindegyik esetben 170 *Hz* frekvenciájúak voltak.

8. ábra. Az átengedett intenzitás a négyszögjeles vezérlőfeszültség hatására. Az időállandó mérése. (a fényképen 1 beosztás = $5 \ 10^{-4} s$)